APPLICATION NOTE

Use of Ferrimagnetic Material in Circulators

Introduction
The realization of non-reciprocal microwave ferrite devices stems from the gyro-magnetic behavior of the elementary magnetic dipoles or uncompensated electron spins of the ferrite material.

This Application Note describes the material properties and basic geometry criteria required in the design of ferrite junction circulators. The three-port version, called the Y-junction circulator, is discussed in this Application Note.

The Y-junction circulator is a non-reciprocal device that provides transmission of energy from one of its ports to an adjacent port, while decoupling the signal from all other ports. The circulator symbol shown in Figure 1 indicates that the RF energy:

- Incident on port 1 emerges from port 2.
- Entering port 2 emerges from port 3.
- Entering port 3 emerges from port 1.

Two ferrite disks, one located on each side of a metallic center conductor, are used in the stripline type of circulator. The circulator action is obtained by biasing the ferrite element in the axial direction with an internal static field (Hcir) of proper magnitude. The circulator can operate at two Transverse Magnetic (TM) modes of opposite polarization.

Under the circulation condition shown in Figure 1 at a specific applied Direct Current (DC) field, these TM modes create a null at port 3, which is then isolated, and power is transferred from port 1 to port 2. The power entering at port 2 appears at port 3, and so on, creating the circulator action. When port 3 is terminated in a matched load, the device operates as an isolator, passing power between port 1 and 2, but absorbing power into the load when power is passed into port 2 and into the load of port 3.

Most circulators are used as isolators in a similar fashion, giving isolation in the range of +20 dB to +30 dB. The direction of circulation can be reversed by reversing the polarity of the DC field. Two or more circulator junctions can be combined to give very high isolation performance.

The Y-junction circulator can also be used as an isolator or a switch, and is simple in construction, compact, and lightweight. Units have been built to operate in frequency bands of approximately 5 % to 35 % from 0.1 Gc to greater than 140 Gc. Good results have been obtained over wide ranges of peak and average power. At Very High Frequency (VHF), circulators have been operated at about 1 MW peak and at < 2 kW average power.

Junction Circulators
The Y-junction circulator can be constructed in either rectangular waveguide or stripline. The waveguide type, shown in Figure 2, is used at high microwave frequencies. Although Figure 2 consists of three H-plane junctions, Electric field-plane (E-plane) circulators can also be made.

Figure 1. Y-Junction Circulator

Figure 2. Waveguide Y-Junction Circulator
The stripline version shown in Figure 3 is principally applicable to the VHF and low microwave frequencies, and usually made with coaxial connectors.

![Figure 3. Stripline Y-Junction Circulator](image)

In both types, a ferrite element is placed in the center of three symmetrical junctions that are spaced 120 degrees apart. A ferrite post is used in the waveguide version. Two ferrite disks, one located on each side of a metal center conductor, are used in the stripline version.

These devices operate in two ways to meet the circulation condition:

- **Below resonance =** Uses a combination of the DC field just above the low field loss (determined by $\gamma \times 4\pi M_s$ and the shape demagnetization factor), but below ferromagnetic resonance [reference 1].
- **Above resonance.**

Because the effective RF permeability below resonance is close to unity, the diameter is a function of the frequency determined by the TM mode, and the bandwidth by the maximum $4\pi M_s$ allowed by the low field loss requirement.

Because the permeability above resonance can be varied significantly near resonance, the size is a function of the DC bias and frequency. Considerable variation in possible size for a given frequency is possible provided very narrow line width materials are used.

Low field loss is less likely above resonance, except at very low frequencies, less than 500 MHz for most applications. For both above resonance and below resonance, it is essential that the ferrite is as magnetically saturated as possible to avoid non-linear effects like inter-modulation and harmonic distortion. This is a function of the shape as well as the bias field and $4\pi M_s$.

Using composites that consist of a ferrite surrounded with a ring of high dielectric constant dielectric helps the saturation by reducing the internal field uniformity created by magnetic return paths, ineffective magnets, and pole pieces, resulting in improved non-linear behavior.

Operating Principles

Network theorems tell us that reciprocal multiport junctions cannot be matched, but that we can match non-reciprocal multiport junctions. Trans-Tech, Inc. (TTI) has found that a non-reciprocal, loss-less, matched, multiport junction is a perfect circulator. These theorems led to the development of ferrite Y-junction circulators. Much of the original device design has proceeded on an empirical basis. Recently, circulator action has been described in terms of electromagnetic field theory, and is available in design software form. Design equations exist that relate the ferrimagnetic element size and circulator operating characteristics to the intrinsic material properties ($4\pi M_s$, ΔH, γ_{eff}, μ_{eff}, ε) [references 2, 3, 4].

References

APPLICATION NOTE • USE OF FERRIMAGNETIC MATERIAL IN CIRCULATORS

Copyright © 2013, Trans-Tech Inc., Inc. All Rights Reserved.

Information in this document is provided in connection with Trans-Tech, Inc. (“Trans-Tech”), a wholly-owned subsidiary of Skyworks Solutions, Inc. These materials, including the information contained herein, are provided by Trans-Tech as a service to its customers and may be used for informational purposes only by the customer. Trans-Tech assumes no responsibility for errors or omissions in these materials or the information contained herein. Trans-Tech may change its documentation, products, services, specifications or product descriptions at any time, without notice. Trans-Tech makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Trans-Tech assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Trans-Tech products, information or materials, except as may be provided in Trans-Tech Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS, AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY, OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. TRANS-TECH DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS, OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. TRANS-TECH SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Trans-Tech products are not intended for use in medical, lifesaving, or life-sustaining applications, or other equipment in which the failure of the Trans-Tech products could lead to personal injury, death, or physical or environmental damage. Trans-Tech customers using or selling Trans-Tech products for use in such applications do so at their own risk and agree to fully indemnify Trans-Tech for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Trans-Tech products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Trans-Tech assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Trans-Tech products outside of stated published specifications or parameters.